Advances in cluster analysis of microarray data

نویسندگان

  • Qizheng Sheng
  • Yves Moreau
  • Frank De Smet
  • Kathleen Marchal
  • Bart De Moor
چکیده

Clustering genes into biological meaningful groups according to their pattern of expression is a main technique of microarray data analysis, based on the assumption that similarity in gene expression implies some form of regulatory or functional similarity. We give an overview of various clustering techniques, including conventional clustering methods (such as hierarchical clustering, k-means clustering, and self-organizing maps), as well as several clustering methods specifically developed for gene expression analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

Dna Microarray Data Clustering Using Growing Self Organizing Networks

Recent advances in DNA microarray technology have allowed biologists to simultaneously monitor the activities of thousands of genes. To obtain meaning from these large amounts of complex data, data mining techniques such as clustering are being applied. This study investigates the application of some recently developed incremental, competitive and self-organizing neural networks (Growing Cell S...

متن کامل

Clustering of Microarray data via Clique Partitioning

Microarrays are repositories of gene expression data that hold tremendous potential for new understanding, leading to advances in functional genomics and molecular biology. Cluster analysis (CA) is an early step in the exploration of such data that is useful for purposes of data reduction, exposing hidden patterns, and the generation of hypotheses regarding the relationship between genes and ph...

متن کامل

Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data

MOTIVATION Recent technological advances such as cDNA microarray technology have made it possible to simultaneously interrogate thousands of genes in a biological specimen. A cDNA microarray experiment produces a gene expression 'profile'. Often interest lies in discovering novel subgroupings, or 'clusters', of specimens based on their profiles, for example identification of new tumor taxonomie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004